Text Size

Article Index

Frame Analysis

Frame Analysis performs frame and finite element analyses of 2D and 3D structures. It can perform linear and non-linear static analysis of three dimensional structures comprising. The program can also perform buckling, modal, harmonic and seismic analyses of 3D models.

Beam and Shell Finite ElementsYou use a combination of beams, shells, and solid finite elements to build your model. The supports can be rigid or elastic. Loads are entered in load cases and grouped in load combinations with separate SLS and ULS load factors. You can choose to have the program calculate the structure's own weight automatically; sections and material properties are linked from the Section Database and Material Database. Advanced features include tension-only elements (e.g. bracing slender elements), spring elements (elastic constraints between parts of the model) and compression-only supports (uplift possible); all of these advanced features require iterative solutions via second-order or non-linear analysis.

The program supports multiple ways for building a structural model; depending on your preference, use any one or combination of the following methods:

  • Table Editor: Manually enter of members, supports and loads in a tabular environment reminiscent of Microsoft® Office Excel. You can copy and paste information between the table editor and Excel and other tabular programs.
  • Modeller: Draw the structure in a 3D CAD-like environment.
  • Input Wizards: Generate models of typical building frame and trusses by entering a set up parameters that defines the layout and loads. For more complex layouts, you can use the Plate and Solid Mesh Generator to generate finite element input.


The basics Frame Analysis module is capable of linear analysis of 2D frames, e.g. (vertical) plane frame and trusses, and (horizontal) grillages. Several add-on modules are available to extend the program's functionality:

  • First Mode Shape of Tower

    3D Module: Extend to full 3D analysis.
  • Finite Element Module: Adds the ability to use shell finite elements and solid finite elements (bricks).
  • Second Order & Buckling Analysis Module: Adds the option to perform second-order analysis (P-delta) and buckling analysis (global instability).
  • Non-linear Analysis Module: Allows the you to incorporate geometric non-linearity and material non-linear behaviour in the analysis, and use and catenary cable elements. This module also facilites stage analysis that account for elestic and inelastic deformation during construction stages.
  • Dynamic Analysis Module: Enables you to determine mode shapes and natural frequencies of 3D structures, and also perform harmonic analysis (cyclic loads) and seismic analysis (response spectrum).

When using shell finite elements to model concrete slabs and walls, Frame Analysis can calculated reinforcement steel quantities. It can do this for bending and/or in-plane stresses.

Frame Analysis has design links to the steel, concrete and timber design modules. When sending analysis output to a design modules, the geometric and design load case input data is entered automatically.

Third-party Integration

PROKON Structural Analysis and Design and Frame Analysis in particular, can form an integral part of your Building Information Management (BIM) stragedy. Several options are available fro sharing Frame Analysis models with other software:

  • Revit®: Using Prodesk Suite, round-trip information sharing for 3D structures of any complexity is possible between and Revit® on the one side, and Frame Analysis and Sumo Structural Modeller on the other side. Build the model in AutoCAD or Revit (or modify the architect's model), and send it to Frame Analysis or Sumo for analysis and design.
  • Industry Standards: Integerate with models created by packages such as ProSteel 3D and StruCad. You can import models from and export to CIS/2 (CIMSteel Integration Standard) and SNF (StruCad Neutral File) format.
  • CAD Drawings: Import 2D and 3D drawings of structures saved in DWG or DXF format. You can also use Padds to draw a frame and generate geometrical input for Frame Analysis.